
String-Based Semantic Web Data Management Using
Ternary B-Trees

Jürg Senn
Department of Computer Science

University of Basel

juerg.senn@unibas.ch

Supervised by: Helmar Burkhart
Department of Computer Science

University of Basel

helmar.burkhart@unibas.ch

ABSTRACT
The Resource Description Framework (RDF) stems from the
Semantic Web but can also be regarded simply as a data
model, independent of its origins. Its simple structure is
ideal for describing and merging heterogeneous data from
different sources quickly, without having to design a com-
plex schema first. The different nature of RDF requires new
approaches for data management and query processing and
entails new problems when it comes to efficiency and scala-
bility. Current solutions rely on string mapping and exten-
sive indexing, but concentrate on a subset of the RDF query
language SPARQL. They also ignore inherent properties re-
siding in RDF itself, particularly its string characteristics.

In this work we propose the ternary B-tree as a new data
structure for storing and accessing RDF. It is string-based,
making use of the intrinsic features of RDF. Strings are
decomposed into fixed-size elements and organized as tree
nodes. This approach permits new ways of filtering RDF,
joining query results, partitioning for different orderings,
and for parallelization.

1. INTRODUCTION
The Resource Description Framework (RDF, [5]) is a sim-

ple data model for representing statements or facts in a
knowledge base. It originates from the Semantic Web field
where it constitutes the basic building block to model knowl-
edge in a structured form. In the context of the Seman-
tic Web, RDF is the means to convey knowledge related
data worldwide in an unambiguous manner. Its fully de-
fined structure is machine-readable, in contrast to the semi-
structured information published on the Web today. And
most importantly, it provides the elementary facts for au-
tomatic logical reasoning, the cornerstone of the Semantic
Web.

It has since been recognized that RDF as a data model is
applicable in a more general way. Its simple format is ideal
for collecting and storing any kind of data quickly, without
the need to create a complex schema first. Compared to the

.

relational model, we could say that the intended meaning
of data is provided implicitly when accessing it, not when
designing the schema. Having no schema also simplifies
amendment and extension. New RDF statements can be
added immediately and provide further information about
elements described. All in all, RDF is seen from a data
model perspective this way, in contrast to the logics per-
spective mentioned above. This observation of RDF tak-
ing multiple roles is also made in [11]. Examples abound
where the data model perspective is taken and information
is currently published foremost with eased reuse in mind,
not logical reasoning. In particular, the Linked Data initia-
tive [2] has become something of a hub, compiling a direc-
tory of datasets and encouraging interlinking between them.
Concrete examples of freely published data are the protein
sequence database Uniprot [38], structured information ex-
tracted from Wikipedia [1, 37], U.S. census data [6], geo-
graphical data [7], and reviews from the Revyu web site [3],
only to mention a few.

The top portion of Figure 1 provides an example of facts
stated in RDF, taken from [33]. Each fact is represented
by a triple where the first element is the subject to be de-
scribed, the second denotes a property, and the third a value
for the property (the object). The elements of the triple are
called resources in RDF parlance. In the example, books
are described with their title. The values of the first two
books are literals whereas the third is a URI identifying an-
other resource. The latter could act as a subject of other
triples again, introducing a third perspective of RDF which
interprets it as a graph structure. The middle portion of Fig-
ure 1 is an example of the query language for RDF, called
SPARQL [33]. Books are selected with a triple pattern and
a regular expression, then ordered by title. SPARQL queries
always require one or more triple patterns matching a por-
tion of the dataset. Each pattern match returns a set of
variable bindings which have to be joined by common vari-
ables. The binding sets are filtered, ordered, and projected
to yield the final list of results.

The simplicity and ease of use of RDF is countered with its
fine-grained nature. Queries typically require a large num-
ber of patterns resulting in complex query graphs. During
query optimization, more alternatives must be considered.
In terms of physical design, RDF requires new approaches
for compact storing and efficient access. RDF datasets tend
to grow fast which poses scalability problems. These chal-
lenges have already been approached with considerable suc-
cess, but several important issues require further considera-
tion.

42

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore



Figure 1: RDF Example, SPARQL Query, and

Query Result

2. RELATED WORK
Query engines supporting RDF and SPARQL can be cat-

egorized coarsely by their type of physical design. An early
system is RDFSuite [10] which maps to an object-relational
database. The schema for the mapping is still heavily based
on semantic properties of the underlying data and uses RDF
Schema (now part of [5]). Sesame [18] also builds relational
tables from the data semantics but has an abstraction layer
which permits use of different database systems. 3store [22,
23] saves RDF to a single, giant triples table with columns
for three resources and uses a relational database as the
back-end. Resources are hashed to integer identifiers and
kept in separate dictionary tables. Note that separation of
structure and original resource strings by mapping to fixed-
length values is universal across all references cited here.
The reason is to avoid redundant storage, to compress data,
and to have faster processing.

Jena [42, 19] is one of the most complete systems avail-
able. It implements most of the different Semantic Web
specifications. Query processing is mainly memory-based
but data can be stored in relational databases through a
persistence layer. Jena originally had a layout similar to
3store. To avoid problems having many self-joins on a sin-
gle triples table, the schema used now is denormalized and
parts of the resource strings are written from the dictionar-
ies back to the triples table. In addition, data is clustered
according to common property resources. Triples having
the same properties are written to different tables where
the columns represent the properties, the rows subject and
object(s). A similar approach is [20]. Continuing on the
idea of building different property tables, the authors in [8,
9] suggest to vertically partition data. The idea is to cre-
ate a separate relation for each property in the dataset. A
relation has only two columns for subject and object. This
approach avoids sparse tables with many NULL values and
eases the use of multi-valued attributes. Clustering prop-
erties together requires extensive tuning to get good per-
formance whereas partitioning vertically produces a schema
automatically. It is also shown that this approach is well-
suited for column stores. A rebuttal challenges the claims
[35]. It is pointed out that there are scalability problems
if there are many properties each requiring a separate ta-

ble. Additionally, queries containing triple patterns where
the property is a variable will require scanning all tables,
making the approach non-universal.

YARS [24] and Kowari [43] introduce the idea of using
index structures to provide access with different patterns
occurring in queries. They both suggest indexes built with
the different possible permutations of the triple elements
(Subject Property Object (SPO), SOP, PSO, . . . ), but they
only suggest the cyclic orders SPO, POS, and OSP, miss-
ing the need for other orders required in complex queries.
YARS implements the indexes with B-trees, Kowari uses
a mix between B-trees and AVL trees. Solutions that ex-
haustively index all possible orderings are RDF-3X [31] and
Hexastore [41]. These approaches forego the need for a rela-
tional schema and a mapping to it. The indexes themselves
become the database. Experiments in [31] and [32] demon-
strate a vast improvement over previous approaches in terms
of query performance, given the right query optimization.
Jena now also has index storage as an option with TDB [4].

Relational database mappings and approaches using in-
dexes are the most common types of RDF engines. Other
types come in different classes. They can be graph-based
[17], distributed [39], bitmap-based [12], or vector-based [40,
26].

Query optimization is not always addressed thoroughly in
approaches that use relational databases as their back-end.
It is commonly assumed that the optimizer of the database
solves this task. Early works on SPARQL query optimiza-
tion adopt known techniques like gathering statistics [36] or
use a more sophisticated cardinality estimation [29]. The
optimizer of RDF-3X [31] uses dynamic programming and
precomputes frequent paths. It is extended in [32] with more
accurate selectivity estimation. The OneQL [27] system em-
ploys a hybrid strategy combining cost-based and magic set
optimization techniques.

3. PROBLEM STATEMENT
Index-based solutions for RDF engines demonstrate that

adaptation of earlier methods to RDF specific specializa-
tions results in much more efficient and scalable systems.
But currently, most results of research RDF engines are
based on experiments with queries that consist almost exclu-
sively of a single triple pattern set. We see a problem when
extending the engines to queries that require extensive fil-
tering and ordering. The issue with filters is recognized in
[28] and [40], but the former gives a solution by mapping
to a single SQL query and does not use special indexes, the
latter does not address the problem.

Filters may contain terms that need to operate on the
original string elements of triples. The filter in Figure 1 is
an example where a regular expression is applied to an object
of a triple. To execute this filter, an engine that normally
works with fixed-length integer representatives must fetch
the associated string from its separate dictionary. Queries
that have triple patterns with low selectivity but contain
highly selective filters will suffer a drop in performance. The
same is true for lexicographic comparison of strings with
filters. One could add some type information to the integer
values. But this only helps with a specific subset of filters,
not with string filters.

Many queries will also require an ordering of results. But
the mapping from strings to integers might not be order-
preserving. Even worse, there does not seem to exist a prac-

43



ticable way for mapping between general strings and a fixed
integer set that retains the order. A theoretic solution is
given in [25], but has issues with precision in practice. In
other work the problem is acknowledged, but postponed [15].
Ordering might not be an issue if a query yields few results.
But again, access to the dictionary may hurt execution times
if there are many results. Concerning orders, partitioning
an index into parts is also more problematic. Partitioned
data might be interesting for parallel processing or sorting
in memory. But partitioning should be done on the origi-
nal strings, not on their identifiers. Otherwise, they are not
ordered in a useful way (there could still be mapped data
inside a partition, though).

Another aspect with string mapping is that inherent prop-
erties of the original data are not considered at all. Most
of the resources in RDF triples are URIs (literals seem to
be rarer). URIs have a hierarchical structure which can be
exploited, e.g. when indexing or partitioning data. Use of
properties like this requires working with the strings.

To extend existing solutions further, a more string-based
approach should be considered. We believe that queries
based on strings are quite common. For example, as RDF
does not have a schema, the structure of an unknown database
first has to be discovered. If the only way to do this is a
SPARQL query, one must rely on filters.

4. APPROACH
In this thesis we propose an alternative approach for an

RDF engine compared to established methods. We want
to focus on a string-based data structure and processing
method. The idea is to work with original, unmapped RDF
data exclusively, to exploit its intrinsic properties for data
storage, query optimization, query execution, and paral-
lelization. We want to contribute:

• a novel disk-based string index dubbed ternary B-tree

• a compression scheme for this index to save space while
still having fast read access

• an adapted query optimizer and processor which makes
use of the index and RDF properties

• a partitioning scheme to tap the potential of parallel
processing and to provide more interesting orders for
the optimizer to consider

Our goal is to demonstrate that a string-based approach
for an RDF engine can be viable and compete with previ-
ous solutions, despite the fact that we work with variable-
sized data. However, we want to concentrate on read-mostly
usage scenarios. Fast updates are not a primary concern.
Currently, RDF datasets often come in bulks and are not
changed frequently. Thus querying is more important at
the moment.

In the following, we present our proposed index data struc-
ture as a first preliminary result and give some suggestions
on how to make use of its properties. Due to space con-
straints, we will only be able to give an impression of the
overall idea but cannot go into detail.

4.1 Ternary B-Trees
A ternary B-tree is an amalgamation of two data struc-

tures, the (generalized) ternary search tree [14] and the (pre-
fix) B-tree [13]. When triples are inserted into a ternary B-
tree, they first have their three parts concatenated into one

string according to the designated order of the index (e.g.
Property Subject Object (PSO)). This single string is then
split up into elements of equal size. We currently use eight
UTF-8 characters. Each element is then 64 bits wide. If a
part is not a multiple of the element size, it is filled up with
zeroes. This way we can determine if we are switching from
one of the three parts to another. Combined elements from
several triples form a multi-way tree with elements of com-
mon prefixes shared. This is illustrated in Figure 2 which
contains elements from five triples arranged in PSO order.
The different colors of the nodes point out the property,
subject, and object of each triple, respectively. The tree is
reminiscent of a Patricia trie [30], but it has fixed-length
character sequences per node.

The tree can also be seen as a generalization of a ternary
search tree [14]. We use the term ternary not because of
structural aspects (nodes can have more than three chil-
dren), but because of the way the tree is traversed. Tree
iterators matching triple patterns follow nodes as long as
they are equal to the known elements of the pattern. If the
current element of the pattern searched is smaller or greater
than the one found, the iterator immediately stops matching
and follows the remaining elements with the closest match
until the end is reached. The last element of each triple is
a special terminator which holds the index of the next node
to search.

Triples are organized into ternary search trees and the
trees in turn form nodes of a B-tree. The B-tree nodes
have a fixed size (e.g. 16 KB) and are split whenever the
internal ternary search trees do not fit. The elements of
a ternary search tree are stored breadth-first in the B-tree
node including some directory information that describes
the internal tree structure. With the directory, a B-tree
node can then always hold any internal tree up to a certain
maximum number of elements, regardless of structure.

The B-tree nodes themselves are stored sequentially in
files, clustered according to their parent nodes. For example,
the tree in Figure 2 has five terminators. If the tree is inside
a B-tree node and that node is internal in the B-tree, it has
six children that are other B-tree nodes (there is an implicit
index 0). Those six nodes are stored together in one file.
The terminator indicates which node index in the file has to
be accessed. With this scheme, the nodes can be compacted
into fewer files. The more triples that fit into a B-tree node,
the less files there are.

The design of the ternary B-tree allows us to exploit the
structure of RDF triples. A pattern match corresponds to
a traversal of the tree. We do not have to read the triple
strings in full because we split them up into elements and
an element can be read fast if it is interpreted as a 64-bit
integer. A join can be executed by matching prefixes of the
triples. If the prefix of a subtree does not match, the whole
subtree can be discarded. With this strategy we can exploit
the string-based nature of a ternary B-tree.

4.1.1 Index Building
A ternary B-tree is built by inserting new triples sequen-

tially. First, the appropriate leaf node for the triple is found.
If the triple is not already in one of the nodes visited during
traversal, it is added to the leaf. Adding a new triple to a
node requires rebuilding the ternary subtree therein. The
subtree is scanned breadth-first. In each level scanned, the
appropriate position for the next element of the triple is de-

44



Figure 2: Example of a multi-way search tree con-

taining five triples, in PSO order

termined. During the scan, all the existing elements of the
tree are written. Once the position for the new element in
one level is reached, it is added and the scan continues. Once
all elements including the new ones are written, the insert
is completed with the subtree containing the new triple.

If the number of elements in the new subtree exceeds the
maximum number of elements, the node is split. The split
algorithm selects one triple which is moved to the parent
node. The trees formed from the elements on the left and
right of the selected triple are written into two nodes. The
algorithm selects the triple which most evenly distributes the
elements in two, taking into account the common prefixes
that are replicated in both halves. In Figure 2, this is the
triple with terminator 3 (dotted). Moving one triple to the
parent node, the split algorithm continues recursively until
no more split is required or the root is reached. If a parent
node is split, the file containing its children is also split.

Note that the split causes a full triple to be moved to
the parent node. This triple is not part of the two split
nodes anymore which means that in contrast to the prefix

B-tree, strings in internal nodes of ternary B-trees are not
only forks, but also actual data. The advantage of this is
that we do not replicate prefix strings but on the other hand
we cannot restrict ourselves to leaf nodes when scanning.

4.2 Partitioning
Materializing all possible permutations, we create six in-

dexes (SPO, SOP, PSO, POS, OSP, OPS). In addition, we
build accumulated indexes SP, SO, PS, PO, OS, OP, and
S, P, O. This is suggested in [31] to use for patterns where
a variable is not part of the result. The additional indexes
also act as histograms for selectivity estimation. The main
problem with keeping all possible permutations is the in-
crease in storage. But due to their regular patterns, the
string indexes are highly compressible (see our suggestions
in Section 5.1).

We propose an additional set of indexes formed from the
leaf nodes of a ternary B-tree. Recall from the previous
section that tree nodes are stored sequentially in a file. The
number of nodes in a file depends on the number of triples
kept in the parent nodes. The files that contain the leaf
nodes form the bottom layer of the tree. Let us now assume
the generic query shown in Figure 3.

Figure 3: Generic Query with Order Requirement

This query has two patterns which join on ?b. One way to
process this query is to use the PSO index for both patterns
which yields variable bindings ordered by ?b first, then ?c.
To get the final result, we have to reorder. This is no prob-
lem for highly selective queries with few results but if there
are many results or the patterns are part of a bigger query
with more complex order requirements, large variable bind-
ing lists have to be ordered and there are fewer chances to
use pipelining. To gain more flexibility, we suggest replicat-
ing the leaf files and create additional, small indexes from
them that are ordered differently. For example, if we take
the POS index, the leaf files are ordered by P first, then O
and S. We copy the leaf files and create indexes from them
in order PSO. Triples that were moved to higher levels of
the B-tree during splits are also copied to the appropriate
indexes, as if they were still in the leafs. The new indexes are
partitions in POS order but can be searched themselves in
PSO order. The query of Figure 3 can then be answered in
a different way. The first pattern is evaluated with the PSO
index as before, but the second now uses POS first. If we
reach a leaf file, we switch to the corresponding PSO index
and join its results with the ones from the first pattern. This
is repeated for each leaf file encountered. In other words, we
join each partition separately. If there are only few results
per partition, this will require many more disk reads com-
pared to the normal approach, but it has the advantage that
the result parts are already partitioned in the final order and
can be sorted in isolation. In addition, if the leaf files are
small enough, results can often be ordered in memory, even
for large databases. This means that almost every query,
no matter how complex, can eventually be answered by this
scheme, without running out of resources.

45



Adding reordered indexes to the database gives us more
flexibility for query processing but it is not yet known if
the additional space requirements will be outweighed by the
performance gains and if there are enough scenarios where
using the indexes is actually faster than the traditional ap-
proach. It also adds more complexity to the query optimizer.
But the potential gains should not be ignored and could give
more significance to using RDF over the relational model.
Exhaustively indexing orderings is simply not possible with
the latter in all cases but conceivable with a triple model.

5. FUTURE WORK
In this section we list the work we have planned for the

continuation of the project. Although it comprises the major
part of our proposed contributions, we do not feel that the
points mentioned here have matured enough to be included
in the approach section and therefore mark them as future
work.

5.1 Index Compression
Our current incarnation of the string index does not in-

clude any compression apart from combining common pre-
fixes inside a node. We see two possibilities to reduce the
overall index size.

The first is compression of the nodes of each file after
some bulk insertion or after a certain time period (e.g. once
per day). Each node is compressed individually. Up until
now, we assumed that a file has a regular pattern where each
node has the same size. This allows us to address a node
immediately by the index given in the parent node. After
compression, the nodes will be of different size. This requires
a directory with a prefix sum array to get the correct position
and size of the node in the file indirectly. The directory can
be stored in a separate block at the beginning of the file or
included in the terminator elements of the parent node.

The second possibility for compression is after each insert
of a triple. The idea is to keep the nodes at their regular
size and pack as many triples into them as possible. If the
triples take too much room, even in their compressed state,
the node is split. In comparison to the first method, com-
pressing the node immediately has the advantage of delay-
ing splits as long as possible which should improve insertion
speed. On the other hand, one has to guarantee that the
compressed node can be split into exactly two new nodes.
A split into more than two nodes might be possible but is
more complicated to handle. What is preferred then is a
method to determine if the node must be split for a new
triple or if the triple can still be included with a future split
fitting into two nodes.

5.2 Optimizer
A query optimizer adapted to our string index is a core

requirement and has to be the main contribution. We want
to build on work presented in [31, 32, 27] and create our own
optimizer. A major problem is to determine when to use
the partitions suggested in Section 4.2 and when to use the
original index. Another is how to gather and store statistics
and how to apply them for the tree structure.

It is very likely that the optimizer has to contain a dy-
namic component which determines during query processing
where filtering is done, how early in the process filtering is
started, and if filtering is done for all elements passed dur-
ing tree traversal or only intermittently. As the triples are

stored in fixed-size elements, they can often be filtered out
without having to read them completely. Continuing this
thought, we can often exclude whole subtrees without hav-
ing to traverse them in full which could help tremendously
with joins.

An open question is if the additional partitions will allow
us to produce the final requested ordering of data immedi-
ately without having to fall back to intermediate sorting. If
this is possible, all joins can be merge joins. There would
be no need for hash joins or similar pipeline-breaking opera-
tions. But it seems unlikely, as queries with high selectivity
will have their results spread out into the partitions and
reading the data would be much slower than using the origi-
nal index with the wrong order and sorting afterwards. The
optimizer will have to determine when to use which option.

5.3 Parallel Processing
Parallel processing of RDF data has not been studied at

all up until now and we see opportunities to include this in
our work. There are distributed solutions, but we want to
concentrate on multi-core parallelism.

Having partitioned data provides the opportunity to pro-
cess query operations in parallel, although it is difficult to
assess the potential performance gain as access to disk is
still serial. A join is separated into independent parts and
threads can produce and cache results independently, at
least if they are not in the same partition. As the indexes
are ordered by the original triple strings, the different result
parts will also be partitioned in that order and sorting is
only required inside a partition.

An open question is on how to traverse the index trees in
parallel. Is a new thread spawned for each fork or do the
threads traverse the tree by the same path until the final,
distinctive elements of the triples are reached?

Another question is if it is possible to use other forms
of parallel processing, e.g. graphics processing units. This
kind of hardware provides a massively parallel environment
but threads are much less autonomous.

5.4 Performance Evaluation
There is no official performance benchmark for RDF en-

gines. Previous work mainly resorts to custom made SPARQL
queries or the LUBM dataset [21]. LUBM is restricted to
a specific application scenario in the university domain and
is not general enough in isolation. Other benchmarks in
the literature are the Berlin SPARQL benchmark [16] and
SP2Bench [34]. We will incorporate these different bench-
marks in our experiments, but will include our own set of
custom queries. This way we can gear queries towards real
RDF datasets and specific application patterns.

6. CONCLUSION
In this work we introduced the ternary B-tree as an alter-

native data structure for storing RDF. Based on the original
RDF data and not on mappings thereof, we see the ternary
B-tree as better prepared for the extensive string process-
ing and ordering required by complex SPARQL queries. By
decomposing triples into fixed-size elements, we regain the
advantage of fast comparison. It also enables us to orga-
nize the triples into ternary search trees which gives rise to
a new join strategy. As the ternary B-tree retains the nat-
ural ordering of triples, an extended partitioning scheme is
possible, providing alternative ways to consider for a query

46



optimizer and for parallelization.

7. REFERENCES
[1] Dbpedia. http://dbpedia.org.

[2] Linked data. http://linkeddata.org.

[3] Revyu. http://revyu.com.

[4] Tdb - a sparql database for jena.
http://openjena.org/TDB.

[5] Resource description framework.
http://www.w3.org/RDF, 2004.

[6] The 2000 u.s. census: 1 billion rdf triples.
http://www.rdfabout.com/demo/census, 2007.

[7] Geonames ontology.
http://www.geonames.org/ontology, 2007.

[8] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In VLDB,
2007.

[9] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Sw-store: a vertically partitioned dbms
for semantic web data management. volume 18, 2009.

[10] S. Alexaki, V. Christophides, G. Karvounarakis,
D. Plexousakis, and K. Tolle. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In
SemWeb, 2001.

[11] R. Angles and C. Gutierrez. Querying rdf data from a
graph database perspective. In ESWC, 2005.

[12] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.
Matrix ”bit”loaded: A scalable lightweight join query
processor for rdf data. In WWW, 2010.

[13] R. Bayer and K. Unterauer. Prefix b-trees. In ACM

Transactions on Database Systems, 1977.

[14] J. L. Bentley and R. Sedgewick. Fast algorithms for
sorting and searching strings. In SODA, 1997.

[15] C. Binning, S. Hildenbrand, and F. Färber.
Dictionary-based order-preserving string compression
for main memory column stores. In SIGMOD, 2009.

[16] C. Bizer and A. Schultz. The berlin sparql benchmark.
2009.

[17] M. Bröcheler, A. Pugliese, and V. Subrahmanian.
Dogma: A disk-oriented graph matching algorithm for
rdf databases. In ISWC, 2009.

[18] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: An architecture for storing and querying rdf
data and schema information. In Semantics for the

WWW, 2001.

[19] J. J. Carroll, I. Dickinson, and C. Dollin. Jena:
Implementing the semantic web recommendations. In
WWW, 2004.

[20] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan. An
efficient sql-based rdf querying scheme. In VLDB,
2005.

[21] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark
for owl knowledge base systems. Web Semantics:

Science, Services and Agents on the World Wide Web,
3(2-3):158–182, 2005.

[22] S. Harris and N. Gibbins. 3store: Efficient bulk rdf
storage. In PSSS, 2003.

[23] S. Harris and N. Shadbolt. Sparql query processing
with conventional relational database systems. In
WISE, 2005.

[24] A. Harth and S. Decker. Optimized index structures
for querying rdf from the web. In LA-WEB, 2005.

[25] H. V. Jagadish, N. Koudas, and D. Srivastava. On
effective multi-dimensional indexing for strings. 2000.

[26] D. Kolas, I. Emmons, and M. Dean. Efficient
linked-list rdf indexing in parliament. In SSWS, 2009.

[27] T. Lampo, E. Ruckhaus, J. Sierra, M.-E. Vidal, and
A. Mart́ınez. Oneql: An ontology-based architecture
to efficiently query resources on the semantic web. In
SSWS, 2009.

[28] J. Lu, F. Cao, L. Ma, Y. Yu, and Y. Pan. An effective
sparql support over relational databases. In
SWDB-ODBIS, 2007.

[29] A. Maduko, K. Anyanwu, A. Sheth, and
P. Schliekelman. Estimating the cardinality of rdf
graph patterns. In WWW, 2007.

[30] D. R. Morrison. Patricia—practical algorithm to
retrieve information coded in alphanumeric. J. ACM,
15(4):514–534, 1968.

[31] T. Neumann and G. Weikum. Rdf-3x: a risc-style
engine for rdf. In VLDB, 2008.

[32] T. Neumann and G. Weikum. Scalable join processing
on very large rdf graphs. In SIGMOD, 2009.

[33] E. Prud’hommeaux and A. Seaborne. Sparql query
language for rdf.
http://www.w3.org/TR/rdf-sparql-query, 2008.

[34] M. Schmidt, T. Hornung, M. Meier, C. Pinkel, and
G. Lausen. Sp2bench: A sparql performance
benchmark. In Semantic Web Information

Management, 2010.

[35] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for rdf data
management: not all swans are white. In VLDB, 2008.

[36] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and
D. Reynolds. Sparql basic graph pattern optimization
using selectivity estimation. In WWW, 2008.

[37] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago:
A core of semantic knowledge unifying wordnet and
wikipedia. In WWW, 2007.

[38] Swiss Institute of Bioinformatics. Uniprot rdf.
http://dev.isb-sib.ch/projects/uniprot-rdf,
2009.

[39] J. Weaver and G. T. Williams. Scalable rdf query
processing on clusters and supercomputers. In SSWS,
2009.

[40] C. Weiss and A. Bernstein. On-disk storage techniques
for semantic web data - are b-trees always the optimal
solution? In SSWS, 2009.

[41] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple indexing for semantic web data management.
In VLDB, 2008.

[42] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds.
Efficient rdf storage and retrieval in jena2. In SWDB,
2003.

[43] D. Wood, P. Gearon, and T. Adams. Kowari: A
platform for semantic web storage and analysis. In
WWW, 2005.

47




